A Series System with Returns: Stationary Analysis
نویسندگان
چکیده
This paper analyzes a series inventory system with stationary costs and stochastic demand over an infinite horizon. A distinctive feature is that demand can be negative, representing returns from customers, as well as zero or positive. We observe that, as in a system with nonnegative demand, a stationary echelon base-stock policy is optimal here. However, the steadystate behavior of the system under such a policy is different from that in systems with nonnegative demands. We present an exact procedure and several approximations for computing the operating characteristics and system costs for any stationary echelon base-stock policy, and also describe an algorithm for computing a good policy. As an alternative to the echelon base-stock policy, we discuss a policy that uses only local information. Finally, we describe how to extend the analysis to the case where returns occur at multiple stages instead of just at the stage closest to demand, and the case where returns require a recovery lead time.
منابع مشابه
The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملA Multi-Time Scale Non-Gaussian Model of Stock Returns
We propose a stochastic process for stock movements that, with just one source of Brownian noise, has an instantaneous volatility that rises from a type of statistical feedback across many time scales. This results in a stationary non-Gaussian process which captures many features observed in time series of real stock returns. These include volatility clustering, a kurtosis which decreases slowl...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملNon-stationarities in Stock Returns
Modeling nancial returns on longer time intervals under the assumption of station-arity is, at least intuitively, given the pace of change in world's economy, a choice hard to defend. Relinquishing the global stationarity hypothesis, this paper conducts a data analysis focused on the size of the returns, i.e. the absolute values of returns, under the assumptions that, at least locally, the S&P ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 53 شماره
صفحات -
تاریخ انتشار 2005